

FLOWE OPEN BANKING

INTERFACE

Developer’s guide v2.1.0

Contents
1. Introduction .. 2

2. TPP Onboarding .. 2

3. TPP Authentication and Authorization ... 2

4. Consume AIS/PIS APIs ... 6

4.1 AIS ... 6

4.2 PIS .. 8

1. Introduction
Flowe exposes Berlin Group v1.3 compliant Open Banking APIs for Account Information Services

(AIS) and Payment Initiation Services (PIS) TPP in two environments.

Table 1 lists API and IDP URIs as well as scopes for SANDBOX and PRODUCTION environments. Note

that scopes contain both AISP and PISP scopes. Remember to remove AISP or PISP scope in case the

role requested is PISP or AISP only.

Environment

Sandbox Open Banking

API URI

https://tp-pp.flowe.com

Sandbox IDP URI https://bm0p0tier4.b2clogin.com/bm0p0tier4.onmicrosoft.com

Sandbox Developer

Portal URI

https://tp-portal-pp.flowe.com/

Sandbox Scopes string offline_access https://bm0p0tier4.onmicrosoft.com/9d957d7c-

9550-487d-b127-4d146e618846/user_impersonation

https://bm0p0tier4.onmicrosoft.com/9d957d7c-9550-487d-

b127-4d146e618846/aisp

https://bm0p0tier4.onmicrosoft.com/9d957d7c-9550-487d-

b127-4d146e618846/pisp

Production Open Banking

API URI

https://tp.flowe.com/

Production IDP URI https://floweidp.b2clogin.com/2e7da2ff-0e8f-41bc-83c3-

b5933ad2445c

Production Developer

Portal URI

https://tp-portal.flowe.com/

Production Scopes String offline_access https://floweidp.onmicrosoft.com/8cf3af01-

3882-4ad4-b92a-759078c0bedd/user_impersonation

https://floweidp.onmicrosoft.com/8cf3af01-3882-4ad4-b92a-

759078c0bedd/aisp

https://floweidp.onmicrosoft.com/8cf3af01-3882-4ad4-b92a-

759078c0bedd/pisp
Table 1

2. TPP Onboarding
The onboarding procedure description is available at https://www.flowe.com/open-banking-api.

As the result of the onboarding procedure the TPP will receive at least the following parameters:

• <SUBSCRIPTION_KEY>: you need to click the link in the registration email received to access

the API portal. There, in the Profile section, you can find the subscription keys.

• <CLIENT_ID>

• <CLIENT_SECRET>

• <CLIENT_SECRET_EXPIRATION_DATE>: TPPs are strongly recommended to request a new

client secret long before its expiration. For this purpose, contact openbanking at flowe dot

com using the contact email provided during the onboarding process.

3. TPP Authentication and Authorization
The authentication and authorization approach applied by Flowe to the TPPs is the decoupled SCA

approach with OAuth2 as a pre-step.

That basically means that the TPP client should obtain an access token from the Flowe IdP, either by

redirecting PSU User-Agent to the Flowe IdP login page or redeeming a new one given the previously

received refresh token. Contextually the TPP may submit a consent request or a payment request.

Those should be approved by the PSU using the Flowe App.

A detailed description on the steps above follows below.

The OAuth2 pre-step is done with the OAuth2 Authorization Code Grant, where the OAuth2 Client

is the TPP backend, which is confidential. That means that the <CLIENT_SECRET> should never be

shared with the TPP Frontend (webapp/native app) but kept on a TPP server (or in a key vault

accessed only by the backend). Same process applies for access tokens and refresh tokens retrieved

during the authentication process.

OAuth2 Authorization Code Grant variants such as OAuth2 Authorization Code Grant with PKCE, that

allows a webapp or native app to directly get an access token without passing thought a backend,

are not allowed.

Another parameter that must be kept confidential is the <SUBSCRIPTION_KEY>.

TPP Frontend starts the OAuth2 flow redirecting the PSU User-Agent or opening a Web View to the

Flowe IDP login form to allow the user to input their credentials, as explained later.

Any violation of the policy above will result in Flowe blacklisting the TPP.

Figure 1

TPP Frontend can be a webapp hosted in the PSU browser or a native app installed on a PSU device.

For simplicity, we describe the case in which the Frontend is a webapp, but the instructions can be

easily adapted to the case in which the TPP Frontend is a native app, which should use a web view in

the interaction with the Flowe IDP.

Below are described the steps shown in Figure 1:

1. PSU asks the TPP to sign-in into Flowe.

2. The TPP redirects the PSU to the following URL12:

Where <STATE> is a random string generated from and stored in the frontend3.

3. The PSU insert their credentials

4. IDP redirects User-Agent to the following URL:

5. TPP frontend checks that <STATE> is equal to the one provided in step 2. If so, it extracts the

<AUTHORIZATION_CODE_GRANT> from the URL and sends it to the TPP backend.

6. TPP backend performs the following HTTPS call4 providing the TPP eIDAS QWAC certificate

as the client certificate in the mutual TLS handshake.

7. In case of success, Flowe IDP will return a response with status 200 and, in the

application/json formatted payload, TPP backend extracts the following properties:

• <ACCESS_TOKEN> in “access_token” property

• <REFRESH_TOKEN> in “refresh_token” property

Steps after the 7 are not directly tied to TPP Authentication and Authorization but they are shown to

explain how requests to Open Banking APIs should be performed, and which path data exchange

takes.

8. TPP frontend sends a request to TPP backend to perform an Open Banking API request.

9. TPP Backend performs the corresponding request to Flowe Open Banking APIs with mutual.

Additionally, the request must contain the following headers:

• Authorization: Bearer <ACCESS_TOKEN>

• P0-APIKey: <SUBSCRIPTION_KEY>

10. The Open Banking API responds. Note that the validity of the <ACCESS_TOKEN> is limited in

time. After the <ACCESS_TOKEN> expiration the API will respond with HTTP status code 401.

Without the PSU interaction, the TPP can request another access token using the

1 To increase readability each query string parameter is shown in a separated line.
2 Placeholders must be URL encoded.
3 To understand what the purpose of the OAuth2 state parameter check

https://auth0.com/docs/protocols/oauth2/oauth-state.
4 To Increase readability each payload argument is shown in a separated line.

<IDP_TARGET_ENVIRONMENT_BASE_URI>/oauth2/v2.0/authorize?

p=B2C_1A_Psd2_SignIn&

client_id=<CLIENT_ID>&

state=<STATE>&

redirect_uri=<REDIRECT_URI>&

scope=<SCOPES_STRING>&

response_type=code&

prompt=login

<REDIRECT_URI>?state=<STATE>&code=<AUTHORIZATION_CODE_GRANT>

POST /oauth2/v2.0/token?p=B2C_1A_Psd2_SignIn HTTP/1.1

Host: <IDP_TARGET_ENVIRONMENT_BASE_URI>

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&

scope=<SCOPE_STRING>&

client_id=<CLIENT_ID>&

client_secret=<CLIENT_SECRET>&

code=<AUTHORIZATION_CODE_GRANT>

<REFRESH_TOKEN> with the following HTTPS request4.

The response contains a new <ACCESS_TOKEN> and another <REFRESH_TOKEN>.

The TPP must use the new access token. Also, if it wants to do not involve the PSU after 90

days but it wants to involve them not before 180 days, then it has to replace the old refresh

token with the new one5. 180 days after the step 2 the identity provider will accept no more

refresh tokens, requiring the authentication process to restart from step 2.

The PSU data always passes through the TPP backend and never goes directly from the TPP

Frontend to the Flowe Open Banking APIs.

4. Consume AIS/PIS APIs
TPP backend can consume AIS/PIS Open Banking APIs, which are described in the developer portal

and downloadable in the form of OpenAPI (previously known as Swagger) specification.

Flowe Open Banking APIs SCA Approach is the Decoupled SCA Approach with Implicit Start of

Authorization (with oAuth2 pre-step already shown).

The details on this flow are described in the Berlin Group PSD2 Standard v1.3.

4.1 AIS

In the following scenario, the TPP acts like an AISP.

1. The TPP backend perform a consent request

5 Our identity provider does not allow refresh tokens to be valid after 90 days, but it allows to have a sliding

lifetime of refresh tokens of 180 days.

POST /oauth2/v2.0/token?p=B2C_1A_Psd2_SignIn HTTP/1.1

Host: <IDP_TARGET_ENVIRONMENT_BASE_URI>

Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&

scope=<SCOPES_STRING>&

client_id=<CLIENT_ID>

client_secret=<CLIENT_SECRET>

refresh_token=<REFRESH_TOKEN>

POST /openbankingais/v1/consents HTTP/1.1

Host: <PSD2_TARGET_ENVIRONMENT_BASE_URI>

Content-Type: application/json

P0-APIKey: <SUBSCRIPTION_KEY>

Authorization: Bearer <ACCESS_TOKEN>

{

 "access": {

 "availableAccounts": "allAccounts",

 "allPsd2": "allAccounts"

 },

 "recurringIndicator": true,

 "validUntil": "2020-08-31",

 "frequencyPerDay": 4,

 "combinedServiceIndicator": false

}

2. Note that Flowe adopts the Global Consent approach, that is the TPP requests access to all

the PSU entities (accounts, balances, transactions) with one consent request. The PSU can

accept all or nothing.

Additionally, Flowe adopts the following policy over the parameters above:

a. “recurringIndicator” must always be true. In case you need “One-Shot” consent just
set “frequencyPerDay”: 1 and “validUntil: “<TODAY_UTC>”, where <TODAY_UTC> is

a placeholder representing the current day in UTC.

b. “validUntil”: cannot be greater than <TODAY_UTC> + 180 days.

c. “frequencyPerDay”: cannot be greater than 4.
3. If TPP is authenticated and authorized, the response will be the following

4. TPP should show a message to the PSU asking them to approve the consent request that the

PSU device will receive as a push notification (and, as a fallback, as a to do list item in the

Flowe app main page). Flowe chose to not populate the “psuMessage” header to let the

TPPs choose the language given the PSU preferences in their application.

5. TPP can now start polling with a reasonable frequency (no more than 1/sec) the consent

status API.

Before any customer action, the response will be the following

6. A push notification is sent to the PSU device.

7. The PSU accepts the TPP requests with SCA.

8. The consent status request will return the consent status “valid”. If otherwise, the PSU

refused the consent request, the consent status will be “rejected”.

9. If the PSU accepted the consent request, the TPP can now perform AISP API calls, such as

querying the list of accounts of the PSU.

HTTP Status Code 200

Consent-Type application/json

{

 "consentId": "AAACT20143X9S9GJ6M",

 "_links": {

 "status": {

 "href": "/v1/consents/AAACT20143X9S9GJ6M/status"

 }

 },

 "consentStatus": "received"

}

GET /openbankingais/v1/consents/AAACT20143X9S9GJ6M/status HTTP/1.1

Host: <PSD2_TARGET_ENVIRONMENT_BASE_URI>

P0-APIKey: <SUBSCRIPTION_KEY>

Authorization: Bearer <ACCESS_TOKEN>

HTTP Status Code 200

Content-Type: application/json

{

 "consentStatus": "received"

}

Note that the Consent-ID cannot be used more than “frequencyPerDay” parameter in 24

hours, specified during consent request, for unattended requests. If the consent usage

exceeds that limit, server responds with Http Status Code 429.

To indicate that an API request is attended the PSU-IpAddress header must be populated

with the PSU user agent IP address.

4.2 PIS

Currently, Flowe support “payments” as Payment-Service and “sepa-credit-transfer” as Payment-

Product.

In the following scenario, the TPP acts like a PISP.

1. The TPP backend submits a payment request

Note that only IBAN is allowed as an account reference.

GET /openbankingais/v1/accounts HTTP/1.1

Host: <PSD2_TARGET_ENVIRONMENT_BASE_URI>

Consent-Id: AAACT20143X9S9GJ6M

P0-APIKey: <SUBSCRIPTION_KEY>

Authorization: Bearer <ACCESS_TOKEN>

POST /openbankingpis/v1/payments/sepa-credit-transfers HTTP/1.1

Host: <PSD2_TARGET_ENVIRONMENT_BASE_URI>

Content-Type: application/json

P0-APIKey: <SUBSCRIPTION_KEY>

Authorization: Bearer <ACCESS_TOKEN>

{

 "debtorAccount": {

 "iban": "<DEBTOR_IBAN>"

 },

 "creditorAccount": {

 "iban": "<CREDITOR_IBAN>"

 },

 "creditorName": "<CREDITOR_NAME>",

 "instructedAmount": {

 "amount": "<AMOUNT>",

 "currency": "EUR"

 },

 "chargeBearer": "DEBT",

 "remittanceInformationUnstructured": "<REMITTANCE_INFORMATION>"

}

2. If the input fields are correct, the response will be the following

3. TPP can start polling, with a reasonable frequency (no more than 1/sec), the payment status

API.

Before any customer action, the response will be the following

4. A push notification is sent to the PSU device (and, as a fallback, as a to do list item in the

Flowe app main page) and the PSU is involved.

5. Depending on the approval or the refusal of the PSU we have respectively case a or case b.

a. The “transactionStatus” changes to “ACSP”, which means that the payment request
has been approved and it is in processing.

Depending on the cut-off times it will become “ACSC”, and payment is set to the

clearing network.

In case the clearing network rejects the payment with an incoming pac.002 “RJCT”
then the status of the payment changes to "RJCT".

b. The “transactionStatus” changes to “CANC”. The same happens if the TPP cancels

the payment request before the PSU sends its input.

HTTP Status Code 201

Content-Type: application/json

{

 "transactionStatus": "RCVD",

 "_links": {

 "scaStatus": {

 "href": "/v1/payments/sepa-credit-

transfers/PI20213149S1068Z/authorisations/PI20213149S1068Z-AUTH-1"

 },

 "self": {

 "href": "/v1/payments/sepa-credit-transfers/"

 },

 "status": {

 "href": "/v1/payments/sepa-credit-transfers/PI20213149S1068Z/status"

 }

 },

 "paymentId": "<PAYMENT_ID>",

 "transactionFeeIndicator": "false"

}

GET /openbankingpis/v1/payments/sepa-credit-transfers/<PAYMENT_ID>/status

HTTP/1.1

Host: <PSD2_TARGET_ENVIRONMENT_BASE_URI>

P0-APIKey: <SUBSCRIPTION_KEY>

Authorization: Bearer <ACCESS_TOKEN>

HTTP Status Code 200

Content-Type: application/json

{

 "transactionStatus": "RCVD"

}

The SCA status of a given payment request can be retrieve using the following API, where

<PAYMENT_AUTHORIZATION_ID> can be obtained in the _links.scaStatus.href field from the

payment request submission response shown above.

GET /openbankingpis/v1/payments/sepa-credit-transfers/<PAYMENT_ID>/

authorisations/<PAYMENT_AUTHORIZATION_ID>

Host: <PSD2_TARGET_ENVIRONMENT_BASE_URI>

P0-APIKey: <SUBSCRIPTION_KEY>

Authorization: Bearer <ACCESS_TOKEN>

